
Version	control	with	
Git	&	GitHub

Reproducible	Computing	
@	JSM	2019

Colin	Rundel

July	27,	2019

Version	control

What	is	version	control?
Version	control	is	a	system	that	records	changes	to	a	file	or	set	of	files	over	time
so	that	you	can	recall	specific	versions	later.

Bad

Source:	Piled	Higher	and	Deeper	by	Jorge	Cham

http://www.phdcomics.com/

Better
				2013-10-14_manuscriptFish.doc
				2013-10-30_manuscriptFish.doc
				2013-11-05_manusctiptFish_intitialRyanEdits.doc
				2013-11-10_manuscriptFish.doc
				2013-11-11_manuscriptFish.doc
				2013-11-15_manuscriptFish.doc
				2013-11-30_manuscriptFish.doc
				2013-12-01_manuscriptFish.doc
				2013-12-02_manuscriptFish_PNASsubmitted.doc
				2014-01-03_manuscriptFish_PLOSsubmitted.doc
				2014-02-15_manuscriptFish_PLOSrevision.doc
				2014-03-14_manuscriptFish_PLOSpublished.doc

or	everytime	you	reach	a	milestone,	you	zip	the	entire	project	directory	and
save	it	with	a	date.

Best

Version	control	systems
Start	with	a	initial	version	of	a	document	/	file.

When	you	"save"	just	record	the	pieces	of	the	file	that	changed.

This	creates	a	timeline	for	each	and	every	file	being	tracked	that	lets	you
move	backwards	and	forwards	in	time	by	adding	or	removing	these	diffs.

"Playing	back"	different	sets	of	diffs	onto	the	original	document	allows	for
multiple	versions	of	any	file	to	exist	at	the	same	time.

Source:	Software	Carpentry.

https://software-carpentry.org/

Git/GitHub
Relatively	easy	to	set	up,	almost	universally	available

Integrated	with	RStudio

Network	Effect

Provides	tools	to	help	enhance	collaboration

A	common	location	to	share	your	work

Commits

Diff

Git	and	GitHub

GitHub
If	you	don't	have	a	GitHub	account

Go	to	github.com

Sign	up	with	a	username,	email,	and	password

Username	advice
Incorporate	your	actual	name!	People	like	to	know	who	they’re	dealing
with.	Also	makes	your	username	easier	for	people	to	guess	or	remember.

Reuse	your	username	from	other	contexts,	e.g.,	Twitter	or	Slack.	But,	of
course,	someone	with	no	GitHub	activity	will	probably	be	squatting	on	that.

Pick	a	username	you	will	be	comfortable	revealing	to	your	future	boss.

Shorter	is	better	than	longer.

Be	as	unique	as	possible	in	as	few	characters	as	possible.	In	some	settings
GitHub	auto-completes	or	suggests	usernames.

Make	it	timeless.	Don’t	highlight	your	current	university,	employer,	or	place
of	residence.

Avoid	words	laden	with	special	meaning	in	programming.

Overview
In	this	activity	you	are	going	to	learn	how	to	collaborate	using	Github.	With	a
partner	you	will	learn	some	basics	which	allow	you	to	share	and	edit	files	on
Github.

1.	 Create	a	git	repository	hosted	at	GitHub

2.	 Build	a	README.md	file

3.	 Commit	changes	to	repository

4.	 Collaborate	by	forking	and	editing	partners	file

Create	a	repository	with	a	README.md
file
Step	1:	First	we	are	going	to	create	a	repository	within	our	Github	user	account.

1.	 Go	to	your	Github	profile.	The	url	should	be	http://github/[your-
user-name].

2.	 Create	a	new	Github	repository,	click	the	green	"New"	button,	under	the
repositories	tab.

3.	 Name	your	repository	test-repo.

4.	 In	the	details	write	"Test	repo	for	workshop".

5.	 Check	the	initiate	a	README.md	file	option.

So	far
A	repository	is	a	directory	(folder)	that	houses	both	the	files	of	a	project
AND	the	git	history	of	the	project.

Once	the	repository	is	created	you	will	be	directed	to	the	repository	page
which	now	has	its	own	web	address.

Each	repository	on	Github	has	a	unique	url	so	you	can	easily	share.

At	this	point	in	the	Commits	page	of	your	test-repo	repository	there
should	only	be	one	commit.

Edit	the	README.md	file
1.	 Go	back	to	your	test-repo	repository	main	page.	Click	on	README.md,

then	click	"edit	this	file".	Add	some	random	text	to	the	README.md	file:

Tip:	Notice	that	you	can	use	markdown	syntax.	Use	this	guide	for	Github's	flavor
of	Markdown.	Use	the	"Preview"	button	to	view	the	formatting	of	your
README.md	file.

https://help.github.com/articles/markdown-basics/

Commit
Commit	takes	a	snap	shot	of	your	project.	Each	commit	includes	a	commit
message	that	should	concisely	describe	the	changes	made	or	project	state
at	the	time	of	the	commit.

1.	 Summarize	the	changes	that	you	have	made	in	50	characters	or	less	and
click	the	green	"commit	button".

2.	 Check	out	the	git	history.	You	should	now	see	two	commits.

Collaborate
Now	it	is	time	to	collaborate	with	your	partner.	Navigate	to	your	partner's
repository	by	typing	the	url	directly	into	your	address	bar.	In	order	to	edit
someone	else's	repository	you	usually	follow	this	simplified	work	flow:

1.	 Fork	their	repository	to	your	user	account

2.	 Make	edits	and	commit

3.	 Create	a	pull	request	that	merges	your	changes	into	their	repository.

Tip:	Depending	on	the	project	there	are	variations	on	the	above	work	flow.
Often	the	rules	for	contributing	to	a	project	are	outlined	in	a	file	called
CONTRIBUTING.md	within	the	repository.	One	of	the	more	often	used	works
flows	is	Github	Flow.

https://guides.github.com/introduction/flow/

Forking
Forking	is	creating	a	copy	of	a	git	repository	into	your	own	account.

Forking	allows	you	to	make	changes	to	a	repository	without	affecting	the
main	repository	of	the	project.

This	is	one	of	the	most	exciting	aspects	of	Github	-	you	are	encouraged	to
copy	and	play	with	everyone's	code!

1.	 To	fork	your	partner's	repository	click	the	"fork"	button	in	the	top	right	of
your	screen.

2.	 When	it	asks	where	you	would	like	to	fork	the	repository,	choose	your	user
account	(if	you	are	new	to	Github,	this	should	be	the	only	option).

Make	edits	and	commit
You	should	now	have	a	copy	of	your	partners	repository,	work-
organization-their-name.

Github	keeps	track	of	the	entire	git	history	of	the	project	and	all	forked
copies	made	of	the	project.

1.	 Edit	your	partners	repository	by	clicking	the	edit	button.

2.	 Paste	in	the	answers	to	your	questions	under	theirs	and	make	a	commit.

Create	a	pull	request
A	pull	request	is	the	final	step	in	the	collaboration	process,	essentially
asking	if	the	edits	made	to	your	copy	can	be	incorporated	into	another
repository.

1.	 Make	sure	you	are	in	your	forked	copy	of	your	partner's	repository	(check
the	url	-	your	user	name	should	preface	the	repository	name)

2.	 Click	the	green	"New	Pull	Request"	button.	You	will	get	an	overview	of	the
changes	you	made	to	the	repository.

3.	 Click	the	"Create	a	Pull	Request"	button	to	continue	the	pull	request.	Your
partner	will	now	get	a	notification	of	a	pull	request	on	their	main	repository,
as	will	you	if	your	partner	made	changes.

4.	 Go	ahead	and	accept	this	pull	request.

Git	in	RStudio

Git	and	R	/	RStudio
The	instances	of	RStudio	Cloud	we	are	using	already	have	git	installed,	but	there
are	a	couple	of	things	we	need	to	do	to	personalize	our	git	configuration.

The	usethis	package	makes	this	very	straight	forward.

usethis::use_git_config(
		user.name	=	"Colin	Rundel",	
		user.email	=	"rundel@gmail.com"
)

usethis::git_vaccinate()
##	✔	Adding	'.Rproj.user',	'.Rhistory',	'.Rdata',	'.DS_Store'	to	'/home/rundel/.gitignore'

usethis::git_sitrep()
##	Git	user
##	*	Name:	'Colin	Rundel'
##	*	Email:	'rundel@gmail.com'
##	*	Vaccinated:	TRUE
##	usethis	+	git2r
##	*	Default	usethis	protocol:	<unset>
##	*	git2r	supports	SSH:	TRUE
##	*	Credentials:	'<usethis	+	git2r	default	behaviour>'
##	GitHub
##	*	Personal	access	token:	<unset>
##	Repo
##	ℹ	No	active	usethis	project.

Other	useful	git	config	options
For	certain	operations	GitHub	will	require	that	you	authenticate,	in	order	to
avoid	having	to	type	your	username	and	password	repeatedly	we	can	ask	git	to
cache	our	credentials

usethis::use_git_config(
		credential.helper	=	"cache	--timeout=600000"
)

This	will	cache	your	username	password	for	600,000	seconds,	or	~1	week.	This
cacheing	occurs	only	on	the	machine	where	this	is	set	(and	where
authentication	occured)	and	when	using	https	based	url.

Follow	along	demo
Step	1:	Clone	your	test	repository	from	before	to	obtain	a	copy	of	the	files	in
RStudio	Cloud.

Step	2:	Edit	a	file	in	this	repository/project.

Step	3:	Stage	your	changes	to	be	committed.

Step	4:	View	the	diff,	and	commit	your	changes,	with	a	commit	message.

Step	5:	Push	your	changes	to	your	own	fork	of	the	the	GitHub	repository.

Step	1:	Clone
Clone	your	test	repository	to	obtain	a	local	copy	of	the	files.

1.	 In	RStudio	Cloud,	go	to	the	Workspace	and	click	the	New	Project	button.

2.	 Select	New	Project	from	Git	Repo

3.	 Fill	in	the	requested	information,	use	GitHub's	HTTPS	address

Step	2:	Edit
Edit	a	file	in	this	repository/project.

1.	 Create	an	R	Markdown	document	using	the	New	File	menu	option.

2.	 Change	the	output	to	github_document

3.	 Update	the	YAML	with	your	information

4.	 Add	additional	text,	code,	plot	as	you	like

5.	 Knit	the	document

Step	3:	Stage
Stage	your	changes	to	be	committed.

1.	 Go	to	the	Git	pane	in	RStudio.

2.	 Stage	the	changes	for	the	changed	file(s)	by	checking	the	boxes	next	to
them

Step	5:	Commit
View	the	diff,	and	commit	your	changes,	with	a	commit	message.

1.	 Click	the	commit	button.

2.	 In	the	pop-up	window	view	the	diff	for	the	Rmd	file.	You	can	view	it	for	the
HTML	file	as	well	if	you	like.

3.	 Enter	an	informative	commit	message,	like	"Changed	analysis	year	to	X",
and	hit	Commit.

Step	6:	Push
Push	your	changes	to	your	own	test	repo	on	GitHub.

push:	When	using	git	push	always	means	pushing	commits	from	your	local
respository	(your	computer	/	RStudio	Cloud)	to	a	remote	repository	(Github).

1.	 Now	push	your	changes	to	GitHub	by	hitting	Push.

2.	 Enter	login	information	as	needed.

Other	day	one	essentials

More	info	on	the	Git	pane
File	tracking:

The	RStudio	Git	pane	lists	every	file	that’s	been	added,	modified	or	deleted.

The	icon	describes	the	change:

	Modified:	You	changed	the	contents	of	the	file.

	Untracked:	You	added	a	new	file	that	Git	hasn't	seen	before.

	Deleted:	You	deleted	a	file.

You	can	get	more	details	about	modifications	with	a	 :

Green:	added	text

Red:	removed	text

