
Scaling	reproducible	projects

Reproducible	Computing	
@	JSM	2019

Colin	Rundel

July	27,	2019

Example	-	Scottish	Lip	Cancer	Slides

file:///Users/rundel/Desktop/Workshops/repro-compute-jsm19/04-scaling/demo/lip_cancer.Rmd

The	pain	points

There	are	a	couple	of	code	blocks	that	take	awhile	to	run:

1.	 get-data

2.	 neighbors

What	makes	each	of	these	slow?

get-data

...

shape_dir	=	here("data/shapefiles")
dir.create(shape_dir,	showWarnings	=	FALSE,	recursive	=	TRUE)

base_url	=	"http://web1.sph.emory.edu/users/lwaller/book/ch9/"
shapefiles	=	c("scot.shp",	"scot.dbf",	"scot.shx")

for(file	in	shapefiles)	{
			download.file(
					file.path(base_url,	file),	
					destfile	=	file.path(shape_dir,	file),	
					quiet	=	TRUE
)
}

...

neighbors

d	=	sf::st_distance(lip_cancer	%>%	sf::st_set_crs(NA))
class(d)	=	NULL

W	=	(d	==	0.0)	*	1L

m	=	rowSums(W)
lip_cancer$n_neighbors	=	m

Roll	your	own	cache

It	is	fairly	straight	forward	to	use	R's	ability	to	serialize	objects	in	order	to	create
a	simple	cache	for	slow	running	code.

For	example,	we	can	rewrite	the	neighbors	code	chunk	as	follows

if	(!file.exists("dist_mat.rds"))	{
		d	=	sf::st_distance(lip_cancer)
			saveRDS(d,	"dist_mat.rds")
}	else	{
			d	=	readRDS("dist_mat.rds")
}
class(d)	=	NULL

W	=	(d	==	0.0)	*	1L

m	=	rowSums(W)
lip_cancer$n_neighbors	=	m

Aside	-	RDS	vs	Rdata

Probably	the	most	common	approach	for	serializing	and	read	R	objects	are	the
save	and	load	functions,	respectively.

Generally	using	Rdata	files	(via	save	and	load)	is	not	considered	a	best
practice,	this	is	because	they	both	save	and	restore	objects	and	their	names.
This	can	result	in	objects	being	silently	overwritten	when	an	Rdata	file	is	loaded
and	it	also	makes	it	difficult	to	discover	exactly	what	objects	and	values	are
stored	in	an	Rdata	file.

saveRDS	instead	saves	only	a	single	R	object	and	readRDS	requires	that	the
user	explicitly	give	a	name	to	the	object	when	it	is	read	in.

Issues

No	depency	tracking	/	invalidation

Need	to	delete	rds	file	or	explicitly	rerun	some	of	the	code

Quick	and	dirty	solution	that	does	not	scale

knitr	and	cached=TRUE

knitr	is	able	to	accomplish	something	similar	by	caching	the	results	of	code
chunks	when	explicitly	asked	to	via	the	cached	chunk	option.

This	cacheing	scheme	takes	into	account	all	objects	created,	side-effects	like
plots	and	text	output,	basic	environmental	details	like	packages	used,	and
automatic	or	manual	specification	of	dependency	between	code	chunks.

See	more	at	Yihui's	Examples	for	the	cache	feature.

https://yihui.name/knitr/demo/cache/

Issues

It	is	important	to	understand	under	what	circumstances	a	cached	code
chunk	will	become	invalidated,	see	discussion	here

Constructing	code	chunk	level	dependency	structures	is	cumbersome	and
can	be	quite	brittle

autodep	works	reasonably	well	but	has	many	edge	cases	(e.g.	does	not
work	with	source)

Having	to	nuke	the	entire	cache	directory	by	hand	is	a	semi-regular
experience.

https://yihui.name/knitr/demo/cache/

