
Introduction	to	make

Reproducible	Computing	
@	JSM	2019

Colin	Rundel

July	27,	2019

make
Automatically	build	software	/	libraries	/	documents	by	specifying
dependencies

Originally	created	by	Stuart	Feldman	in	1976	at	Bell	Labs

Almost	universally	available	(all	flavors	of	unix	/	linux	/	osx)

Makefile	basics
A	Makefile	provides	a	list	of	targets	and	their	dependencies.	For	each	target
you	then	specify	the	steps	necessary	to	generate	the	target	using	the
dependencies.

target1:	depend1	depend2	depend3	...
				step1
				step2
				step3
				...

depend1:	other_depend
				step1
				step2

The	targets	and	their	dependencies	must	form	a	directed	acyclic	graph	-	which
is	how	make	evaluates	what	steps	to	run	and	in	what	order.

Steps
Steps	are	just	one	or	more	shell	commands	to	be	executed	that	will	eventually
generate	the	target.

Some	important	features	/	requirements:

Steps	must	be	prefixed	with	a	tab	character	(not	spaces)

Each	step	executes	in	its	own	shell,	therefore	commands	that	change	state	/
environment	(e.g.	cd)	will	not	necessarily	persist.

The	solution	is	to	string	commands	together	into	a	single	step	using	;
or	&&.

To	stop	a	step	from	echoing	its	command	when	running	prefix	it	with	a	@.

Example	1	-	Dependencies
a:	b	c
				@printf	"Building	a\n"

b:
				@printf	"Building	b\n"

c:
				@printf	"Building	c\n"

Example	2	-	Paper
paper.html:	paper.Rmd	Fig1/fig.png	Fig2/fig.png
				Rscript	-e	"library(rmarkdown);render('paper.Rmd')"

Fig1/fig.png:	Fig1/fig.R
				cd	Fig1;Rscript	fig.R

Fig2/fig.png:	Fig2/fig.R
				cd	Fig2;Rscript	fig.R

Smart	Execution
Because	the	Makefile	specifies	the	dependency	structure	and	make	knows
when	a	file	has	changed	(by	examining	the	file's	modification	timestamp)	it	only
runs	the	steps	that	depend	on	the	file(s)	that	have	changed.

After	running	make	the	first	time,	I	edit	paper.Rmd,	what	steps	run	if	I	run
make	again?

What	if	I	edit	Fig1/fig.R?

What	if	I	rename	paper.html	to	paper2.html

Variables
Like	shell	(or	R)	we	can	define	variables

R_OPTS=--no-save	--no-restore	--no-site-file

Fig1/fig.png:	Fig1/fig.R
		cd	Fig1;Rscript	$(R_OPTS)	fig.R

Special	Targets
By	default	when	running	make	without	arguments	it	will	attempt	to	build	the
first	target	in	the	Makefile	(whose	name	does	not	start	with	a	.).	By
convention	we	often	include	an	all	target	as	this	first	target,	which	explicitly
specifies	how	to	build	everything	within	the	project.	

all	is	an	example	of	what	is	called	a	phony	target	-	because	there	is	no	all	file
in	the	directory.	Other	common	phony	targets:

clean	-	remove	any	files	created	by	the	Makefile,	restores	to	the	original
state

install	-	for	software	packages,	installs	the	compiled	programs	/	libraries	/
headers	

Any	phony	targets	in	a	Makefile	can	be	listed	using	the	.PHONY	special	built-in
target	name,

.PHONY:	all	clean	install

Example	3	-	Phony
.PHONY:	c

a:	b	c
				@printf	"Building	a\n"

b:
				@printf	"Building	b\n"

c:
				@printf	"Building	c\n"

Builtin	Variables
$@				the	file	name	of	the	target

$<				the	name	of	the	first	dependency

$^				the	names	of	all	dependencies

$(@D)				the	directory	part	of	the	target

$(@F)				the	file	part	of	the	target

$(<D)				the	directory	part	of	the	first	dependency

$(<F)				the	file	part	of	the	first	dependency

Pattern	Rules
Often	we	want	to	build	several	files	in	the	same	way,	in	these	cases	we	can	use	%
as	a	special	wildcard	character	to	match	both	targets	and	dependencies.

So	we	can	go	from

Fig1/fig.png:	Fig1/fig.R
				cd	R;Rscript	fig.R

Figs2/fig.png:	Fig1/fig.R
				cd	R;Rscript	fig.R

to

Fig%/fig.png:	Fig%/fig.R
				cd	$(<D);Rscript	$(<F)

Example	4	-	Paper	(Fancy)
all:	paper.html

paper.html:	paper.Rmd	Fig1/fig.png	Fig2/fig.png
				Rscript	-e	"library(rmarkdown);render('paper.Rmd')"

Fig%/fig.png:	Fig%/fig.R
				cd	$(<D);Rscript	$(<F)

clean:
				rm	-f	paper.html
				rm	-f	Fig*/*.png

.PHONY:	all	clean

Further	Reading	/	Reference
Mike	Bostock	-	Why	use	make

Karl	Broman	-	minimal	make

GNU	Manual

GitHub	Code	Search	-	filename:Makefile

http://bost.ocks.org/mike/make/
http://kbroman.org/minimal_make/
https://www.gnu.org/software/make/manual/make.html
https://github.com/search?q=filename%3AMakefile

