Introduction to make

Reproducible Computing
(@ JSM 2019

Colin Rundel

July 27, 2019

1/14

make

m Automatically build software / libraries / documents by specifying
dependencies

m Originally created by Stuart Feldman in 1976 at Bell Labs

m Almost universally available (all flavors of unix / linux / osx)

2/14

Makefile basics

A Makefile provides a list of targets and their dependencies. For each target

you then specify the steps necessary to generate the target using the
dependencies.

targetl: dependl depend2 depend3 ...
stepl
step2
step3

dependl: other_depend
stepl
step2

The targets and their dependencies must form a directed acyclic graph - which
Is how make evaluates what steps to run and in what order.

3/14

Steps

Steps are just one or more shell commands to be executed that will eventually
generate the target.

Some important features / requirements:
m Steps must be prefixed with a tab character (not spaces)

m Each step executes in its own shell, therefore commands that change state /
environment (e.g. cd) will not necessarily persist.

® The solution is to string commands together into a single step using ;
or &&.

m To stop a step from echoing its command when running prefix it with a @.

4/14

Example 1 - Dependencies

a: b c
@printf "Building a\n"

@printf "Building b\n"

@printf "Building c\n"

5/14

Example 2 - Paper

paper.html: paper.Rmd Figl/fig.png Fig2/fig.png
Rscript -e "library(rmarkdown) ;render ('paper.Rmd"')"

Figl/fig.png: Figl/fig.R
cd Figl;Rscript fig.R

Fig2/fig.png: Fig2/fig.R
cd Fig2;Rscript fig.R

6/14

Smart Execution

Because the Makef1 Le specifies the dependency structure and make knows
when a file has changed (by examining the file's modification timestamp) it only
runs the steps that depend on the file(s) that have changed.

m After running make the first time, | edit paper . Rmd, what steps runif I run
make again?

s WhatifleditFigl/fig.R?

m Whatifl rename paper.htmlto paper2.html

7/14

Variables

Like shell (or R) we can define variables

R _OPTS=--no-save —--no-restore —--no-site-file

Figl/fig.png: Figl/fig.R
cd Figl;Rscript $(R_OPTS) fig.R

8/14

Special Targets

By default when running make without arguments it will attempt to build the
first target in the Makef1i1le (whose name does not start with a .). By
convention we often include an all target as this first target, which explicitly
specifies how to build everything within the project.

allisanexample of whatis called a phony target - because thereisno all file
in the directory. Other common phony targets:

m clean - remove any files created by the Makefile, restores to the original
state

m jnstall - for software packages, installs the compiled programs / libraries /
headers

Any phony targets in a Makefile can be listed using the . PHONY special built-in
target name,

+PHONY: all clean install

9/14

Example 3 - Phony

.PHONY: c
a: b c
@printf "Building a\n"

@printf "Building b\n"

@printf "Building c\n"

10/14

Builtin Variables

m $S@ thefile name of the target

m $< the name of the first dependency

m $A the names of all dependencies

m S(@D) thedirectory part of the target

m $(@F) thefile partof the target

m S(<D) thedirectory part of the first dependency

m S(<F) thefile partof the first dependency

11/14

Pattern Rules

Often we want to build several files in the same way, in these cases we can use %
as a special wildcard character to match both targets and dependencies.

So we can go from

Figl/fig.png: Figl/fig.R
cd R;Rscript fig.R

Figs2/fig.png: Figl/fig.R
cd R;Rscript fig.R

to

Fig%/fig.png: Fig%/fig.R
cd $(<D);Rscript $(<F)

12 /14

Example 4 - Paper (Fancy)

all: paper.html

paper.html: paper.Rmd Figl/fig.png Fig2/fig.png
Rscript -e "library(rmarkdown) ;render ('paper.Rmd"')"

Fig%/fig.png: Fig%/fig.R
cd $(<D);Rscript $(<F)

clean:
rm —-f paper.html
rm -f Figx/*.png

.PHONY: all clean

13/14

Further Reading [Reference

m Mike Bostock - Why use make
m Karl Broman - minimal make
m GNU Manual

m GitHub Code Search - filename:Makefile

14 /14

http://bost.ocks.org/mike/make/
http://kbroman.org/minimal_make/
https://www.gnu.org/software/make/manual/make.html
https://github.com/search?q=filename%3AMakefile

